Data Governance Tools: Capabilities to Look For

Data Governance Tools: Capabilities to Look For

Organizations are heavily investing in a data governance initiative to help ensure their data delivers business value. A successful data governance initiative depends on careful planning and the right people, including business executives and data stewards.

However, using the appropriate technology and tools is also extremely important for effective and sustainable data governance. Companies sometimes get overwhelmed with the variety of solutions in the market. However, the process of buying a data governance tool can be simplified once you understand your needs. Then one can decide which features and functionality are required.

Capabilities of a Versatile Data Governance Tool

The tool should be versatile and should have the following features: 

Integrated Data Catalog

Data Catalog

If a data governance tool has a built-in integrated data catalog, it makes data discovery a smooth process for users.  

Data Discovery is crucial for BI and Analytics. Most data engineers and data scientists spend 20% of their time in finding the data for their specific business problem. This process can take weeks or even months to get to the relevant data. 

Data engineers/scientists should have a Google/Amazon type of solution where they can search for the data and understand it as well.

Data Quality Assessment and Maintenance

Data Quality Assessment and Maintenance

Data quality is another significant driving force in most activities of data governance. 

For enterprises to attain better data quality, some software solutions are – data mining tools, data editors, data differencing utilities, data link tools, workflow, project management systems, and version control.

Data cleansing or data scrubbing is also a part of the data quality initiative. It correlates, identifies, and removes the duplicate occurrences of the same data points. 

A System of Reward and Attribution

If participants get rewarded for their data and tribal knowledge, they are more likely to share it. If they are recognized for their data quality they are more likely to maintain it. A data catalog that is integrated with the data governance tool lets those in the know easily share their data and knowledge and get rewarded for it.

Otherwise, all data owners want to hold their data tightly. Most times, application owners, by default, become data owners because they are the only ones that have access and knowledge about it. Some organizations make the CDO (Chief Data Officer) as the owner of the data. However, his/her office most likely does not have adequate information about the data – this becomes another problem. Most people term this as corporate politics. Some organizations want to define ownership at the functional level, such as the VP of sales owning customer’s data while the Chief Procurement Officer owns a supplier’s data. 

Let’s take a hypothetical scenario of the banking industry. There are two teams which aggregate customers’ transactions in their respective data warehouses – the risk analytics team and the customer insights team. Now let’s assume a third business unit (e.g., compliance) is also looking for the customers’ aggregate transactions. Now in the real corporate world the two teams would hesitate in directing the third team to the leading data source. As it would create an unnecessary workload on their data warehouse. 

To solve these kind of issues, any internal data exchanges within the company should be priced. The data governance solution should offer a mechanism for this whole process – neatly documenting data sets and its owner and price of that data. The better the quality of data the higher the price.

Now let’s assume that there is a price for the ‘customers’ aggregate transactions’ data . The compliance team is willing to pay this price out of their project budget. In this scenario, both business units would be willing to go the extra mile to provide access to their customer’s aggregate transaction. It is one of the easiest ways to curb corporate politics into real data sharing culture. It ultimately creates more value for the entire company. 

Data Ownership and Stewardship

The data governance tool should come in handy to maintain ownership and carry out data stewardship.

Data ownership is not about holding the data but about providing it’s access to other business units so that they can also benefit from it. Data stewardship is about managing the data quality in terms of accessibility, accuracy, completeness, consistency, and updating. 

Teams of stewards are typically formed to carry out data security and usage policies as determined through organization data governance initiatives. In a more simplified way, they are established to protect data governance implementation. Some of the team members may include business analysts, database administrators, and business personnel that are familiar with some specific areas of data within the enterprise.

Business Glossary

A business glossary is an essential aspect of data governance, hence the tool should be able to support the building of one.

When it comes to running a business, leaders need to understand what’s going on in each department, be it sales or finance. How can this be possible when, in many cases, the marketing or IT unit speaks a different language? Alternatively, in the case of acquisition and mergers, where there is no uniformity? These situations are where the importance of a business glossary sets in.

A business glossary helps to solve these problems by creating a common vocabulary across an entire organization. It additionally ensures the consistency of these terms by synthesizing all of the information of the organization’s data assets through an array of data dictionaries. It then rearranges it into a more understandable and straightforward format.

To create a useful business glossary, organizations should choose a data governance tool that can connect data quality, data lineage, and data definitions.

Automated Data Lineage

Data lineage is about understanding how and where the data has originated and its processing logic and destination. It gives visibility and also helps in tracing errors back to the root cause in a typical BI process. The data lineage is vital to create trust in the data. 

Usually, we depict lineage in graphical format, so any person with data acumen can easily understand. 

The solution should not only show the lineage graphically but should be able to build the lineage automatically. Creating the data lineage manually is still a time-consuming process. Some of the techniques used to build automatically are:

  1. Code parsing
  2. ETL tool parsing, (Like parse the XML in Informatica )
  3. SQL log parsing
  4. AI 

Top Data Governance Tools


OvalEdge is an easy to use and versatile data governance tool and a data catalog. Its open and agile architecture lets companies customize the tool as per their business needs.

Ovaledge also displays relationships among your data using algorithms and manual inputs to provide a complete picture of your data. Data lineage tracking helps track the data from start to end and to track any errors that occurred along the way.

Ovaledge enable you to set data quality and data definition standards using a business glossary. With Ovaledge, you can assign roles and responsibilities while maintaining access through policy controls.


 offers an enterprise-oriented, data governance platform known to automate data operations and keeping cross-functional teams on the same page.

It offers natural language search, automation of data governance and data stewardship. Collibra also provides users with interactive data lineage diagrams to visually explore details about data like policies, issues, relationships, and flow.


Informatica allows business and IT to collaborate with ease and provides a true enterprise data governance solution. It can be deployed on-premise and in the cloud with traditional and big data use cases to provide flexibility. Informatica breaks down the silos and engages IT, security, and business teams to ensure the data meets compliance and is high quality.


IBM is another tool that comes with an integrated data catalog. IBM also assesses the value of data and helps identify meaningful data while securing critical data and complying with GDPR.


Io-Tahoe is another data governance tool that can facilitate your data governance activities. Data quality can be verified and new sources of information can be uncovered with this tool. The high extent of automation in Data visualization and it’s discovery leads to high interoperability in your data operations, hence streamlining the flow of information in your organization. It also helps with compliance with key data privacy regulations.


The first step in a data governance initiative is understanding the data needs and laying the data governance framework for your company. Then comes picking the right tool where it is important to choose one which is versatile and has an agile architecture. This will enable you to expand the usage of the tool as the needs of the company grow.

Find your edge now. See how OvalEdge works.