Benefits of a Data lake

Benefits of a Data lake

The key benefit of a data lake is that you can store any and all data in one place incurring a low cost, pulling it as analytical needs arise. But how can an organization gain from all this data in oneplace? Let’s see how.

Data Lake Benefits to the Business

In a company, we need to make decisions based on data all the time.  We need the data of the whole group to get a holistic picture and make sound business decisions, a goal of data governance. Read more about data governance here. 

Democratize Data

A data lake can make data available to the whole organization. It is what we call data democratization. Currently, only the top executives have the luxury to ask various departments for reports, get a sense of things from those, and then make a decision.

But what about the middle management and others? They don’t have the luxury to ask for all kinds of data they need from other departments. Even if they eventually get the data, it will cost time. We know if we take a lot of time in making decisions, it can render the whole exercise futile.

With necessary data readily available, all can take viable decisions at their level. For example, the Janitorial staff of a unit can decide what supplies to buy based on the price of the supplies and their needs. A real-world example of enabling everyone to make their own decisions is LinkedIn. On LinkedIn, everyone decides who they want to connect with and what content they want to see. More benefits are listed below.

Get Better Quality Data

With the tremendous processing power of a data lake, one can use tools to ensure the data is of good quality.

Technological Benefit of Data Lake

  • Data storage in native format – A data lake eliminates the need for data modeling at the time of ingestion. We can do it at the time of finding and exploring data for analytics. It offers unmatched flexibility to ask any business or domain questions and to glean insights.
  • Scalability – It offers scalability and is relatively inexpensive compared to a traditional data warehouse when we take scalability into account.
  • Versatility  – a data lake can store multi-structured data from diverse sources. In simple words, a data lake can store logs, XML, multimedia, sensor data, binary, social data, chat, and people data.
  • Schema Flexibility – Traditionally schema necessitates the data to be in a specific format. For OLTP (Application Data), this is great as it validates data before entry. But for analytics, it’s an obstruction as we want to analyze data as is. Traditional data warehouse products are schema based. But Hadoop data lake allow you to be schema free, or you can define multiple schemas for the same data. In short, it enables you to decouple schema from data, which is excellent for analytics.
  • Supports not only SQL but more languages  – Traditional data-warehouse technology mostly supports SQL, which is suitable for simple analytics but for advanced use cases, we need more ways to analyze data. Data lake provides various options and language support for analysis. It has Hive/Impala/Hawq which supports SQL but also has features for more advanced needs. For example, to analyze the data in a flow, you can use PIG or to do machine learning you can use Spark MLlib.
  • Advanced Analytics – Unlike a data warehouse, a data lake excels at utilizing the availability of large quantities of coherent data along with deep learning algorithms. It helps in real-time decision analytics.