Data governance is crucial in every industry, but the stringent regulatory requirements in the financial sector make well-governed data one of the highest business-critical priorities. Globally, banks are required to abide by specific regulatory practices, and these requirements are stringent.
Ultimately, banking regulations are tailored to the amount a bank has in assets. Fundamentally, this is because smaller banks deal with banking activities, like loans and deposits, that have less of a potential impact on the broader economic climate of a jurisdiction than larger banks that deal with securities.
Comprehensive data governance is critical, no matter how big or small your bank is. However, when a US bank exceeds $10 billion in assets, the requirements from regulators ramp up considerably. Despite being eased by the 2018 Economic Growth, Regulatory Relief, and Consumer Protection Act; the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010 laid out strict regulatory policies for banks breaching $10 billion in assets, many of which still stand.
Related Post: Risk Assessment in Banking
Let’s break down how small and mid-sized banks can implement effective data governance programs that ensure compliance, strengthen data security, and drive better business decisions. Read on to learn more.
Small to mid-sized banks must be aware of a comprehensive range of banking regulations that, while different, all carry significant penalties for non-compliance. They include the following:
Hurdles are inevitable when implementing data governance in banking. These challenges range from technical and regulatory to organizational and cultural barriers.
1. Data Complexity and Volume
Banks process massive amounts of customer, transaction, and market data daily. Managing this data’s accuracy, timeliness, and consistency can be overwhelming.
2. Data Silos
Disparate systems across departments create data silos, making unified visibility and analytics difficult.
3. Data Security
Banks are prime targets for cyberattacks. Balancing strong data protection with authorized user access requires careful governance.
4. Regulatory Compliance
Complying with evolving frameworks like Dodd-Frank, Basel III, and GDPR demands meticulous data documentation and traceability.
5. Data Privacy
Protecting sensitive customer data with encryption, anonymization, and consent management is critical.
6. Legacy Systems
Older core banking platforms often lack modern data governance integration capabilities.
7. Change Management
Effective governance requires a cultural shift. Resistance from teams unfamiliar with governance workflows can slow adoption.
8. Data Quality
Duplicate, inconsistent, or missing data can undermine compliance and analytics accuracy.
9. Governance Framework Definition
Defining a data governance framework aligned with business goals and regulations can be challenging.
10. Training & Awareness
Educating staff on data ownership and governance best practices requires ongoing effort.
11. Measuring Success
Tracking KPIs to measure governance effectiveness—like data quality scores or compliance breach reductions—can be complex.
12. Cloud Migration
As banks adopt cloud infrastructure, extending governance policies securely to hybrid or multi-cloud setups is essential.
🧭 Tackling these challenges requires leadership commitment, cross-team collaboration, and a governance platform like OvalEdge to streamline compliance and data control.
Modern data governance implementation doesn’t need to be complex or expensive. Thanks to platforms like OvalEdge, small banks can now build effective governance frameworks incrementally.
Enable every employee to access and interpret governed data.
A strong data culture promotes smarter decisions and accountability.
Implement continuous data profiling, cleansing, and enrichment programs to ensure your data is accurate and reliable.
Use AI-powered classification to detect PII and enforce role-based access controls (RBAC).
Map where data originates, flows, and is used for audit trails and compliance reporting.
OvalEdge helps:
Of course, compliance is the primary driver for data governance in the banking sector, but it isn't the only one. When data is of high quality, one of the consequences of data governance and a requirement when preparing it for compliance, it can be used as a strategic asset. Strong data governance for small banks not only meets compliance but also boosts performance and innovation.
Related Post: Implementing Data Quality for Fair Lending Compliance in Banking
As AI matures, more new technologies will help you add value to your data. For example, you might find a better AI-powered credit scoring program and make data-driven decisions more quickly. However, these mechanisms need high-quality data to run efficiently.
Before, when you wanted a technology, purchasing it was a simple process. However, an extensive dividing line enabled banks with large budgets to get the competitive edge because of the high price many of these technologies demanded. Today, the playing field is more level, but there is a caveat: the technology runs on your data. So, if your data is of low quality, you won't be able to leverage the technology sufficiently, and your competitors will take advantage.
Competition is based on operational efficiency, which depends on today's technologies. While everybody has access to the same technology, banks with comprehensive data governance in place will have a competitive advantage because they can dramatically reduce time to market.
Lineage building is the core process in preparing data for compliance in the banking industry. This was a costly undertaking, but with a data governance tool like OvalEdge, the same task can be carried out at a much lower cost.
With OvalEdge, users crawl all the metadata and collate this knowledge into a centralized data catalog. From here, along with lineage building, you can implement a series of data governance programs that constitute end-to-end governance in your organization.
Ensure that everyone in your organization has governed access to data via self-service. This helps users learn how to use data to develop new strategies, collaborate on projects, and drive a culture of data-driven decision-making.
Make your data high-quality and actionable with an ongoing data quality improvement program embedded into the OvalEdge platform.
Data access management features enable you to develop policies that can be implemented automatically, while ad-hoc access management enables you to grant specific access requests. Use AI algorithms to identify and classify PII and other sensitive data, and use this knowledge to allow secure access to verified users.
Banks must comply with Dodd-Frank, GDPR, Basel III, PCI DSS, and BSA regulations to manage risk and ensure transparency.
OvalEdge automates metadata management, lineage tracking, and access control, helping banks simplify compliance audits and improve data trust.
A governance program includes policies for data access, privacy, quality, and regulatory compliance, all monitored continuously.
Book a call with us to find out:
|